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Face familiarity is thought to alter distances between representations in psychological “face space,”
resulting in substantial improvements in recognition. However, the underlying changes are not well
understood. In Experiment 1 (n = 192), we investigated the effect of familiarity based on everyday expo-
sure to celebrities. Participants judged the similarity of pairs of face photographs, and we found that
greater familiarity increased perceived similarity for two images of the same person, while decreasing
similarity for two images depicting different people. In Experiment 2 (n = 157), familiarity was manip-
ulated through the learning of new identities by watching 5-min video clips. Again, when judging the
similarity of image pairs, familiarity increased the perceived similarity of images of the same person,
while having the opposite effect on images depicting different people. In Experiment 3, we trained a
computational model with images of 333 different identities (totaling 3,949 photographs) and manipu-
lated its familiarity with two new identities. The changes in distances between novel images of these
identities (a proxy for similarity) replicated our behavioral findings. Overall, we build upon recent evi-
dence by demonstrating two transformations through which familiarity alters representational space to
likely benefit face perception.

Public Significance Statement

By combining behavioral evidence with computer simulations, we show that increasing face familiarity
results in (a) an increase in the perceived similarity between different images of the same person and (b)
a decrease in the perceived similarity between images of different people.
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Human faces represent an especially homogenous category, with
every instance sharing both a set of features and their configuration.
These constraints result in a broad similarity in appearance between
faces, while alongside this, we see considerable variability present
within each face across encounters. This variation is produced by
many factors, including changes in facial expression, pose, aging,
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cosmetics, and so on. Because these two sources of variability
may be comparable in size (Jenkins et al., 2011), viewers are often
error-prone when discriminating between similar-looking people,
as well as realizing that different images depict the same person
(e.g., Burton et al., 2010; Fysh & Bindemann, 2018; Jenkins
et al., 2011). Crucially, these difficulties are limited to unfamiliar
faces, and tasks involving familiar face discrimination and identifi-
cation can be considered trivial (e.g., Bruce et al., 2001; Burton
et al., 1999). Clearly, familiarity with a face has significant conse-
quences for how it is processed (e.g., Megreya & Burton, 2006;
for reviews, see Johnston & Edmonds, 2009; Ramon & Gobbini,
2018). However, little is known regarding how face familiarity
affects our internal representations and, as a result, our performance.

Since faces vary along a variety of continuous dimensions (e.g.,
mouth width, nose length, etc.), one way to represent these internally
is a theoretical “face space,” proposed to explain psychological simi-
larity (e.g., Valentine, 1991; Valentine et al., 2016). Each face occu-
pies a specific location, with each dimension describing the variation
in some feature or characteristic. This could be a particular measure
(e.g., face width, nose length) or a more global property (e.g., mascu-
linity). However, its key principle is that faces located nearer to each
other in face space are perceived to be more similar. So far, this frame-
work has provided an explanation for numerous behavioral results,
including the effects of distinctiveness, inversion, caricaturing,
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adaptation, and the other-race effect (for a review, see Valentine et al.,
2016).

Early instantiations of face space typically focused on discriminat-
ing between different faces while tending to ignore the within-person
variability present across instances of the same face (e.g., Valentine
et al., 2016). Relatedly, these models failed to address the important
distinction between familiar and unfamiliar faces, and therefore to
incorporate a mechanism of face learning. Recent research has
shown that these two concepts are intertwined (Burton, 2013). With
each face varying idiosyncratically (Burton et al., 2016), face learning
is improved by experiencing this face-specific variability (e.g., Corpuz
& Oriet, 2022; Ritchie & Burton, 2017). In simple terms, familiarity
with a particular face can be thought of as exposure to more (varied)
instances of that face (e.g., Blauch et al., 2021; Kramer, Young, et al.,
2017; Kramer et al., 2018).

While familiarity improves face identification (e.g., Clutterbuck &
Johnston, 2002, 2004, 2005), we have yet to confirm the underlying
change(s) that may produce this shift in performance. However, two
transformations within face space have been proposed as candidates.
The first is an increase in the representational distance between differ-
ent people, which would decrease the likelihood of their being con-
fused with one another. Theoretical models have tended to
emphasize this change (e.g., Valentine et al., 2016), which has also
been the focus of empirical studies (e.g., Collins & Behrmann,
2020; Faerber et al., 2016). The second transformation is a decrease
in the representational distance between instances of the same person.
This facilitates the perception of these different images/instances as
the same face while again emphasizing the differences (distances)
between people.

This second change is suggested by research on social trait
impressions. For instance, the ratings attributed to different images
of the same identity were more tightly clustered when that identity
was familiar rather than unfamiliar (Mileva et al., 2019).
Furthermore, attractiveness ratings became more consistent over
time, for different images of the same identity, as that individual
was being learned (Koca & Oriet, 2023). Finally, higher ratings of
likeness were given to all images of a person who was more familiar
(Balas et al., 2023; Ritchie et al., 2018; see also Jenkins et al., 2011).
Taken together, these results may be explained by a decrease in the
representational distance between instances for a given identity with
increased familiarity.

More direct evidence for this representational change has come
from recent computational models (Blauch et al., 2021; Kramer
et al., 2018; see also Fitousi, 2024), while only one study has con-
sidered this transformation behaviorally. White et al. (2022) cre-
ated “identity averages” by combining multiple images of a
single person, with these considered to represent each person’s
centroid in face space. In addition, “gender averages” were created
by combining these identity-specific averages for a given gender,
with these representing the (gender-specific) centroid of the overall
face space. Analogous to the partitioning of between- and
within-group variation during analysis of variance, this approach
allowed for the direct comparison of these two sources of variation.
The researchers found that the perceived similarity between an
identity’s images and its average was higher for familiar faces in
comparison with unfamiliar ones, suggesting that images of the
same person are more tightly clustered as a result of familiarity.
However, the perceived similarity between identity averages and
the gender average showed only weak evidence of a familiarity

effect, and so failed to provide support for the idea that familiar
people are represented at a greater distance from each other in
face space. Therefore, the researchers argued that between-person
representational distances might play a far smaller role in recogni-
tion than was previously thought.

However, as White et al. (2022) note, one issue with their study
may be that within- and between-person representational distances
were determined relative to average images. Although there is evi-
dence to support the idea that averages are encoded internally
when viewing face images (e.g., de Fockert & Wolfenstein, 2009;
Kramer et al., 2015; Neumann et al., 2013), it remains to be seen
as to whether we use these representations when determining per-
ceived similarity rather than making a comparison between exem-
plars/instances (see Balas et al., 2023). In addition, we cannot be
sure that our internal average representations sufficiently resemble
these computer-derived stimuli for the purposes of investigating
these hypothesized changes. Of course, the finding that instances
were perceived as more similar to identity averages necessarily
implies that they were also represented more closely to each other.

In the present set of experiments, we wished to test for the influ-
ence of familiarity on the two transformations described above with-
out the involvement of averages. Instead, we employed a more direct
approach by asking the following questions. First, does increased
familiarity with people produce a decrease in the perceived similar-
ity between images of these different people? Second, does this
increase in familiarity also increase the perceived similarity between
different images of the same person? By utilizing participants’ pre-
existing familiarity with faces (Experiment 1), manipulated familiar-
ity via participants learning new identities (Experiment 2), and a
simple computational model (Experiment 3), we demonstrate the
presence of both representational transformations as a result of
increased face familiarity.

Experiment 1: Prior Familiarity

As discussed above, the study by White et al. (2022) utilized aver-
ages (both identity- and gender-specific) as the framework for inves-
tigating perceptual similarity and representational transformations in
face space. Here, we took a more direct approach by considering the
perceived similarity of pairs of images that were unaltered/uncon-
strained. We made no attempt to control for low-level image statistics
or to remove color information (cf. White et al., 2022) since recent
studies have begun to emphasize the importance of incorporating
“ambient,” natural variability when investigating face perception
(see Burton, 2013; Jenkins et al., 2011). In addition, we used a
fully crossed design, incorporating participants and stimuli from
the United Kingdom and the United States. As a result, all images
served as both familiar and unfamiliar stimuli across our partici-
pants, avoiding the possibility of confounding familiarity with the
image set (cf. White et al., 2022). Using this design, we asked par-
ticipants to rate the similarity of pairs of images, along with their
familiarity with the identities depicted, to investigate the relationship
between these two factors.

Method
Transparency and Openness

We used Bayesian approaches for our analyses, which do not rely
on specifying the nature of data collection in advance (Dienes, 2011;
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Etz et al., 2018; Rouder, 2014). As such, the experiments reported in
this article were not preregistered. Similarly, we did not carry out
power analyses prior to data collection.

We report all rules for data exclusion, all manipulations, and all
measures for these experiments. Data collection for all experiments
reported in this article took place in 2023. (To address the question of
demand characteristics, we collected additional data in 2024.) The
data that support the findings of these experiments are openly avail-
able on the Open Science Framework at https:/osf.io/wafvg/.

Participants

A sample of 192 participants (123 women, 67 men, two nonbi-
nary, My, =42.2 years, SD =14.6) living in either the United
Kingdom (n =97) or the United States (n =95) gave informed,
onscreen consent before taking part in the experiment and were pro-
vided with an onscreen debriefing upon completion. Participants
were recruited through the Prolific online platform, where eligibility
was restricted to these two countries, and were paid £1.20 for their
time. The data from seven additional participants were excluded
due to responding incorrectly to at least one of the attention
checks (see below). Both Experiments 1 and 2 received ethical
approval from Ariel University’s research ethics committee (identi-
fication number: AU-SOC-DF-20230904) and were carried out in
accordance with the provisions of the World Medical Association
Declaration of Helsinki.

The sample sizes for this experiment and Experiment 2 were ini-
tially set as a compromise between available resources and our esti-
mates of what was required to measure sufficiently precise effects
with these experimental paradigms. Since we planned to use
Bayesian analytical methods, we anticipated increasing the sample
size where estimates of theoretically important predictors were
imprecise/ambiguous. It is worth noting that Bayesian methods do
not suffer from many of the issues affecting frequentist analyses
regarding optional stopping if the aim is simply sufficient precision
rather than hypothesis confirmation (Rouder, 2014). In the end, our
initial samples provided sufficiently unambiguous evidence, and we
did not choose to collect additional data.

Stimuli

We compiled a list of 166 individuals of national (rather than
international) fame, with half of these selected for their celebrity
within the United Kingdom and the other half within the United
States. These individuals were commonly known through appear-
ances in visual media rather than, for instance, radio alone. The
list of names was generated by contacting colleagues who lived in
these countries, as well as through searching online. For each indi-
vidual, we collected two different photographs using Google
Images searches, with each photograph depicting the individual fac-
ing roughly front-on and with their face free from occlusions.

From this initial set, we formed 25 pairs of different people using
the U.K. celebrities and another 25 pairs from the U.S. celebrities,
equating visual descriptors within each pairing. One of the authors
(unfamiliar with the majority of these identities) was responsible
for creating suitable pairings that demonstrated some similarity in
appearance (through inspection of the collected images). From the
remaining list of unused identities, we selected a further 25 U.K.
and 25 U.S. celebrities who we believed would be the least known

outside of the countries in which they were based. In total, this
resulted in the inclusion of 75 U.K. and 75 U.S. celebrities.

For these 150 identities, all collected images were cropped to contain
only the head and neck, and in some cases, the top of the shoulders, and
were resized to 380 x 570 pixels. (Backgrounds were not removed.)
For the paired identities, we selected one image of each identity so
that the two people appeared most similar to each other. For the remain-
ing identities, both images were used in the study (see Figure 1).

Procedure

The main experiment was completed using the Gorilla online test-
ing platform (Anwyl-Irvine et al., 2020). After consent was obtained,
participants provided demographic information. Each participant was
then presented with the “same person” and “different people” tasks,
which were counterbalanced in order across participants.

Figure 1
Examples of the Images Used

Note. These show two images of the same person (top row) and two
images of different people (bottom row). Image attributions (top row
left to right, bottom row left to right): Neil Grabowsky (cropped);
Raphael Perrino (cropped); David Shankbone (cropped); Andrew H.
Walker (cropped). Photographs are from Wikimedia Commons (2025)
(https:/commons.wikimedia.org/). CC BY-2.0. See the online article
for the color version of this figure.
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In the “same person” task, on each of the 50 trials, participants
were presented with two different images of the same person. At
the beginning of the task, instructions stated that these were “two
photographs of the same person,” and this information remained
onscreen throughout the task. For each pair of images, participants
were asked “how similar does the person look in these photo-
graphs?” and responded using a 7-point scale with labeled anchors
(1 = extremely different to 7 = extremely similar).

In the “different people” task, on each of the 50 trials, participants
were presented with two images of different people. At the beginning
of the task, instructions stated that these were “photographs of two dif-
ferent people,” and this information remained onscreen throughout the
task. For each pair of images, participants were asked “how similar do
the two people look in these photographs?” and responded using the
same scale as above. In both tasks, responses were self-paced, and trial
orders were randomized for each participant.

In addition, we included an attention check within the randomly
ordered presentation for each task, given that attentiveness is a com-
mon concern when collecting data online (Hauser & Schwarz,
2016). For the “‘same person” task, we presented two identical images
of an identity (not featured in the experiment itself). However, the
internal features of the faces were replaced with the text “Instruction
Manipulation Check: Select ‘7’ as your response for this question.”
For the “different people” task, we presented images of two identities
(again, not featured in the experiment itself) who were very different
in appearance (a Black man and a White woman). The internal fea-
tures of the faces were replaced with the text “Instruction
Manipulation Check: Select ‘1’ as your response for this question.”

Upon completion of both tasks, participants were presented with a
“familiarity” task. On each of the 150 trials, the name and photo-
graph of an identity were displayed. This image was the one
shown during the “different people” task (for identities originally
appearing in that task) or one of the two images shown during the
“same person” task (for identities appearing in that task).
Participants were asked to rate their familiarity with the identity
using a 7-point scale with labeled anchors (1 = extremely unfamiliar
to 7 = extremely familiar). Onscreen instructions clarified that we
were referring to their familiarity with each person before participat-
ing in the experiment.

Analytic Strategy

For “same person” trials, the familiarity rating given to that iden-
tity was used in our model. For “different people” trials, we used
the average familiarity rating, calculated from the values given to
the two featured identities. Since this average failed to differentiate
between particular situations (e.g., “moderate familiarity with both
identities” vs. “high familiarity with one and low familiarity with
the other”), we also estimated the model using a disaggregated
familiarity rating for each trial, essentially doubling the number
of observations per participant. However, the overall findings
remained unchanged (with estimates being well within the poste-
rior estimates for the model reported here), and so we report only
the simpler model below. Figure 2 summarizes participants’
responses prior to modeling.

We used model-based Bayesian inference to interpret the data,
specifically by fitting a hierarchical linear regression model.
Similarity ratings were predicted from continuous (participant-mean
centered) familiarity ratings, a dummy-coded variable indicating

trial type (whether the trial represented the same person, coded as
1, or different people, coded as 0), and their interaction. The group-
specific (or random) effects included an intercept for each partici-
pant, as well as a participant-specific slope for the effect of familiar-
ity, allowing for variation in the effect familiarity had on each
individual participant’s similarity ratings.

We set weakly informative priors on all model parameters
(Gelman et al., 2017) that had little influence on the data and
used a Gaussian likelihood (i.e., we assumed similarity ratings
were normally distributed, analogous to ordinary least squares).
For the coefficients representing the intercept, familiarity ratings,
trial type, and the interaction, a Gaussian distribution with a
mean of 0 and a standard deviation of 10 was used, which entertain
very large effects in either direction. A half-Gaussian distribution
with a standard deviation of 3 was used for the error variance of
the likelihood. For the group-specific effects (the participant inter-
cept and participant familiarity slope), two Gaussian distributions
with a mean of 0 and a standard deviation of 1 were used. Models
were estimated using the Bambi and PyMC packages (Capretto
et al., 2020; Salvatier et al., 2016) in the Python programming lan-
guage. Four Markov Monte Carlo chains were run, with each hav-
ing 3,000 tuning steps and 4,000 samples drawn from the posterior.
The model converged, and all parameters had an R < 1.01.

Model Interpretation

Our model specified the interaction between trial type and
familiarity, which represented the difference between trial types
for the association between familiarity and similarity. We recov-
ered the estimates for the familiarity slope within each trial type
by adding the familiarity coefficient to the interaction coefficient
and relied on the interaction coefficient itself as the difference
between trial type conditions for the familiarity slope. To make
inferences about the hypothesis of differences between these
slopes, we used the posterior probability of effects being in a
specific direction (Makowski et al., 2019), calculated via the pro-
portion of the posterior distribution being above or below zero,
p(0 >0 or 8 <0), given the observed data. This was similar in
intention to classical null-hypothesis significance testing but pro-
vided the probability that the hypothesis was different to zero
given the data, and not the converse (Welsch et al., 2020). We
also estimated 94% highest-density intervals (HDIs) of all poste-
rior estimates, which showed the credible range of effects given
the observed data and model.

Results

After estimating the model, we predicted the expected similarity
score given to trials at five levels of mean-centered familiarity (—2,
—1, 0, 1, and 2 units below/above the mean) for both trial types.
These predictions are shown in Figure 3 and describe the pattern
of responses in the data. While similarity ratings were unsurpris-
ingly higher for “same person” trials in comparison with “different
people” trials, the effect of familiarity varied in magnitude and
direction for the two trial types. Overall, the model explained
43.8%, 94% HDI [43.1%, 44.5%], of the variance in similarity
ratings.

The familiarity slope estimates for both trial types are also shown
in Figure 3. For “same person” trials, the slope was positive, b =
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Figure 2

The Mean Familiarity Rating for Each Level of Rated Similarity
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These means are presented separately for (a) “same person” and (b) “different people” trials, and

ignore the hierarchical structure of the data and therefore only illustrate the pre-modelled responses.
(No error bars are presented since inferences should not be made from the data in this form.)

0.17, [0.16, 0.19], p(6 > 0) = 100%. In contrast, the slope for “dif-
ferent people” trials was negative and smaller in magnitude, b =
—0.05, [-0.07, —0.03], p(6 < 0) = 100%. Figure 3 also reveals lit-
tle overlap between these distributions, indicating they are credibly
different. The interaction coefficient of the model supported this,
b=0.22, [0.21, 0.24], p(6 > 0) = 100%. That is, the familiarity
slope for “same person” trials was, on average, 0.22 units greater
than that for “different people” trials.

Ruling Out Demand Characteristics

Our results demonstrated that greater familiarity was associated
with an increase in similarity between different images of the
same person, along with a decrease in similarity between images
of different people. However, we relied solely on subjective ratings
of similarity (following on from White et al., 2022). The potential
concern here is that some version of demand characteristics could
have played a role. For instance, participants might have chosen to
assign similarity more liberally to familiar identities, perhaps
because they “knew” those images depicted the same person.

We preempted this issue by explicitly informing participants (via
onscreen instructions throughout) that image pairs did, or did not,
depict the same person. As such, we aimed to remove the potential
for participants to rely on their own judgments of “same person ver-
sus different people” when rating similarity. It is also important to
note that we found two contrasting effects of familiarity for the
“same person” and “different people” tasks. That is, familiarity
resulted in higher ratings of similarity for two images of the same
person but lower ratings for images of two different people.
Therefore, it seemed unlikely that any demand characteristics
would have led to these two opposing patterns.

Even so, we chose to investigate this concern experimentally.
To this end, we collected data from an additional 40 participants

(21 women, 18 men, one nonbinary, M, = 35.8 years, SD =
13.4) living in the United Kingdom or United States and
recruited/paid through Prolific. These participants completed a
shortened version of the experiment—only 20 “same person” tri-
als and 20 “different people” trials (half U.K. celebrities and half
U.S. celebrities in each task), rather than 50 of each. The aim was
for participants to have a representative experience of the experi-
ment, but we were not interested in their ratings here. All other
design aspects mirrored the original version of the experiment
(counterbalancing task order, a subsequent familiarity task,
etc.). Crucially, upon completion, participants were asked three
open-ended questions, one after the other and in a set order, to
explore their strategies and beliefs.

The first question asked, “When completing the similarity rat-
ings, did you use a particular strategy? (If you didn’t, just write
‘no strategy’ or something similar.)” In response, 22 participants
reported no strategy. For the remaining participants, none explic-
itly mentioned familiarity or how it might have influenced their
ratings, although two participants referred to whether they knew
the individual(s) or not. In both cases, their strategy was to imag-
ine not knowing the identities (if familiar with them) when pro-
viding their ratings. Most responses tended to describe, for
instance, focusing on particular parts of the face or a consideration
of how likely they might mistake two different identities for each
other.

The second question asked, “Did you feel like you should respond
in a particular way when rating the ‘same person’ and/or ‘different
people’ image pairs? (If you didn’t feel like you should respond in
a particular way, just write “no” or something similar.)” In response,
34 participants reported that they had not felt like they should have
responded in a particular way. For the remaining participants, none
mentioned familiarity or how it might have influenced their ratings.
Three responses suggested participants felt that they should provide
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Figure 3
Modeling Results
Slope Estimates within Trial Type
6.0 Trial Type 0
—— Same Person A [
—— Different People i [ ]
I [
5.5 i o
0 [
by 15
i o
£ay ol
o g
5.0 I A i ‘l
L o
> p=-0.0 li=0.1%
= -0.07 -0.03 0.1¢f .19
o L/ cmm— _/ —
€ 4.5
h -0.05 0.00 0.05 0.10 0.15 0.20
o Coefficient
s
2
T 4.0
g
(-8
3.54
3.04
pu=0.22
0.21 0.24
1
2.5 T I 1

S

-4 —l2 0 2
Familiarity (mean-centred)

Note.

0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26
Difference in Slopes

Left panel: Model predictions representing the overall pattern of effects and 94% HDI across increasing familiarity and trial types. Top right: Posterior

distributions of the familiarity slope within trial type, with mean and 94% HDI. Each distribution excludes zero as a credible hypothesis. Bottom right:
Posterior distribution of the difference between slopes. 94% HDI = 94% highest-density interval.

higher similarity ratings for the “same person” trials, with no other
comments of relevance.

The third question asked, “We are interested in whether
familiarity influenced your ratings of similarity. Can you guess
what we predicted we would find for the ‘same person” and/or ‘dif-
ferent people’ similarity ratings? (If you can’t think of a guess, just
write “not sure” or something similar.)” In response, 16 partici-
pants reported that they were unsure. For the remaining partici-
pants, there were 13 responses that included some mention of
familiarity. Of these, 10 provided a directional hypothesis—that
increased familiarity would either increase or decrease similarity
judgments (presumably in relation to “same person” and “differ-
ent people” trials, respectively, although often the specific trial
type was not specified). Importantly, no responses proposed two
different familiarity—similarity relationships for the two trial
types.

Taken together, we found no evidence that demand characteristics
could account for our earlier results. No participants spontaneously
mentioned familiarity when asked about their strategies or whether
they felt the need to respond in a particular way. Indeed, even
when told that we were interested in how familiarity influenced sim-
ilarity, only a small number of participants guessed correctly as to
one of the relationships we had predicted, but importantly, none

included any mention of the idea that we predicted two different pat-
terns for our two trial types.

Experiment 2: Learned Familiarity

The first experiment investigated preexisting face familiarity as a
continuum (see Kramer et al., 2018), with the findings demonstrat-
ing both hypothesized representational changes. Simply, greater
familiarity was associated with an increase in similarity between dif-
ferent images of the same person, along with a decrease in similarity
between images of different people. Interestingly, the effect of famil-
iarity was smaller for between-person judgments (a shallower slope
in Figure 3), providing some support for the results of previous
work, where this transformation also played a smaller role in repre-
sentational changes (White et al., 2022).

Next, we directly manipulated familiarity (now treated as a dichot-
omy) through having participants learn three previously unfamiliar
faces during the experiment. In this way, we could control the
amount of familiarity and provide a stronger argument for a causal
relationship between familiarity and perceived similarity. In addi-
tion, we were able to investigate whether relatively minimal expo-
sure (only 5 min) was sufficient to produce an effect of familiarity.
As in Experiment 1, participants rated the similarity between pairs
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of images, although here, they first learned three of six previously
unfamiliar identities.

Method
Participants

A sample of 157 participants (73 women, 82 men, two nonbinary,
Mg =43.3 years, SD =13.2) gave informed, onscreen consent
before taking part in the experiment and were provided with an
onscreen debriefing upon completion. Participants were recruited
through the Prolific online platform, where eligibility was restricted
to people living in the United States, and were paid £2 for their time.
The data from 34 additional participants were excluded due to
responding incorrectly to at least one of the attention checks (see
below). There was no overlap between this sample and those who
participated in Experiment 1.

Stimuli

We selected two pairs and two individual celebrities from the
U.K. identities that were used in Experiment 1. For each of these
six identities, we collected several high-quality video clips from
YouTube where the person appeared approximately front-on
+45° and was alone in the frame (with minimal or no speaking
by off-camera individuals). The majority of these were interviews
in which the video frame either included the person from the waist
upward or only showed their head and shoulders. In all cases, the
face was clearly visible and large enough to facilitate learning. We
then combined multiple short clips (ranging from four to seven indi-
vidual segments) taken from different videos/interviews to produce a
final 5-min video for each identity (the minimum length of time
needed to form a robust face representation; Popova & Wiese,
2023). These six videos were 1,280 x 720 pixels in size, shown in
color, and with the audio included.

In addition to these videos, we reused the trials featuring these six
identities from Experiment 1. Therefore, for the two pairs, we used
their two “different people” trials, and for the two individuals, we
used their two “same person” trials.

Finally, we divided these six identities into two sets. Set A com-
prised one pair of identities and one individual identity. Set B com-
prised the remaining pair and individual.

Procedure

The main experiment was completed using the Gorilla online test-
ing platform (Anwyl-Irvine et al., 2020). After consent was
obtained, participants provided demographic information. Each par-
ticipant was then presented with a “learning” task, where they were
shown three 5-min videos. These videos depicted the identities from
either Set A or Set B, with this assignment counterbalanced across
participants. The onscreen instructions at the start of this phase
were as follows: “You will be shown 3 videos of people being inter-
viewed. Each video is 5 min long, made up of a few different inter-
views. Please watch the videos carefully and learn to recognise each
person’s face.” Participants were also instructed to have their
device’s sound turned on while viewing these videos. The order of
the three videos was randomized for each participant, with each
video only playing once (i.e., participants were unable to replay
the videos).

We also inserted two attention checks during the “learning” task,
which appeared after the first and second videos finished playing.
For each of these, participants were provided with two buttons
next to each other onscreen, labeled “LEFT” and “RIGHT.” The
first attention check instructed participants as follows: “Attention
check. Please click the LEFT button now (in less than 10 s) to
show you’re paying attention.” The second attention check
instructed participants to click the right button.

After the “learning” task, all participants completed the same
“similarity” task. This comprised two “different person” trials and
two “same person” trials, featuring the six identities from Sets A
and B. These four trials were presented following the same proce-
dure as in Experiment 1, that is, using the same onscreen instructions
and labeled response scale. In addition, we presented the two atten-
tion checks used in Experiment 1. Responses for this task were self-
paced, and the order of these six trials was randomized for each
participant.

Finally, participants were presented with a “familiarity” task. This
was identical to the one used in Experiment 1 except that participants
were only presented with the six identities from Sets A and B. As in
the previous experiment, onscreen instructions clarified that we were
referring to their familiarity with each person before participating in
the experiment.

Analytic Strategy

While the aim of this experiment was to manipulate participants’
familiarity with novel (U.K.) identities, we collected familiarity rat-
ings because our chosen celebrities may still have been recognized
by some of the (U.S.) individuals. As in Experiment 1, participants’
previous familiarity associated with “same person” trials was the
familiarity rating given to that identity, whereas the familiarity asso-
ciated with “different people” trials was the average familiarity rating
derived from the values given to the two featured identities. Again,
estimating the model using a disaggregated familiarity rating for
each trial resulted in the same pattern of results, and so we report
only the simpler model below. Figure 4 summarizes participants’
responses prior to modeling.

Again, we employed Bayesian inference to estimate a hierarchical
linear mixed regression. Similarity ratings were predicted from trial
type (again a dummy-coded variable, with same person trials coded
as 1 and different people trials coded as 1), familiarity (a dummy-
coded variable with trials featuring learned identities coded as 1,
and trials featuring novel identities coded as 0), and the interaction
between these variables. We included previous familiarity (termed
“previous experience” to avoid confusion) as an additional covari-
ate, allowing the model to learn the effects of this previous experi-
ence on the interaction between trial type and (experimentally
manipulated) familiarity. As such, when making predictions about
the expected similarity rating for both levels of familiarity and
trial type, the model held constant the effect of previous experience
at a rating of one.! Group-specific effects included only the random
intercepts for each participant. Our model was thus analogous to a
repeated-measures analysis of variance.

! As an alternative, we carried out analyses after excluding all similarity
ratings for trials in which participants reported any familiarity with the fea-
tured identity or identities (i.e., by responding above 1 on the 1-7 scale).
In this case, the same pattern of results was found.
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Figure 4
The Mean Similarity Rating for Each Level of Familiarity and
Trial Type
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Note. These means ignore the hierarchical structure of the data, as well as
preexperiment familiarity with the identities, and therefore only illustrate
the premodeled responses. (No error bars are presented since inferences
should not be made from the data in this form.)

The prior structure of the model followed the same convention as
in Experiment 1, with weakly informative priors set on all model
parameters and a Gaussian likelihood. The intercept and coefficients
representing trial type, familiarity, and their interaction had a
Gaussian distribution prior with a mean of 0 and a standard deviation
of 10, as did the coefficient representing previous experience, and a
half-Gaussian distribution with a standard deviation of 3 was used
for the error variance. The group-specific effect for the participant
intercept was a Gaussian distribution with a mean of 0 and a standard
deviation of 1. Four Markov Monte Carlo chains were run, with each
having 3,000 tuning steps and 4,000 samples drawn from the poste-
rior. The model converged, and all parameters had an R of 1.

Model Interpretation

We predicted a specific pattern of results, such that the average
similarity ratings for trials featuring learned identities would be
higher than those featuring novel identities for the “same person”
trial type. In contrast, we predicted that similarity ratings would be
lower for trials featuring learned identities than those featuring
novel identities for the “different people” trial type. To test this,
we used the model to predict the conditional means within each of
the four conditions (i.e., learned and novel identities for the “same
person” trials, as well as learned and novel identities for the “differ-
ent people” trials). Given that these means were distributions them-
selves, within each trial type, we subtracted the estimate of the novel
identities’ trials from the learned identities’ trials. These contrast dis-
tributions allow for the straightforward derivation of the probability
of individual directional hypotheses—whether the difference is

positive for “same person” trials and negative for “different people”
trials—as well as the joint probability of these differences being in
the predicted direction (Kruschke, 2014, 2018; Kruschke &
Liddell, 2018). As in Experiment 1, we used 94% HDI and posterior
probabilities.

Results

After estimating the model, we predicted the expected similarity
rating under each combination of trial type and familiarity, holding
previous experience constant at a rating of one. These predictions are
shown in Figure 5. Similarity ratings were unsurprisingly higher for
“same person” trials (learned, M =5.76, [5.52, 6.01]; novel, M =
5.33, [5.11, 5.54]), in comparison with “different people” trials
(learned, M =2.70, [2.47, 2.94]; novel, M =3.00, [2.78, 3.21]).
Overall, the model explained 60.2%, [56.4%, 64.0%], of the vari-
ance in similarity ratings.

Taking the difference between the two levels of familiarity within
each trial type showed that, for “same person” trials, the mean sim-
ilarity rating was higher under learned trials compared to novel trials;
mean difference = 0.43, [0.16, 0.69], p(6 > 0) = 99.9%. For “differ-
ent people” trials, the mean similarity rating was lower under learned
trials compared to novel trials; mean difference = —0.30, [—0.57,
—0.04], p(6 <0) =98.1%. These different distributions are shown
in Figure 5. Finally, the probability of the joint hypothesis test—
that the “same person” trial difference was positive and the “different
people” trial difference was negative—was 98%, supporting our
predictions.

Experiment 3: Computational Modeling

Both Experiments 1 and 2 provided evidence that increasing
familiarity resulted in a change in perceived similarity between
image pairs. In addition, the results from both experiments suggested
that familiarity exerts a stronger influence on within-person, in com-
parison with between-person, representational distances (White
et al., 2022).

In this final experiment, we investigated the effect of familiarity
on distance in face space using a simple computational model. Our
approach utilized principal components analysis (PCA), followed
by linear discriminant analysis (LDA), with these techniques
being well established in the field (e.g., Kramer et al., 2018).
Although the use of LDA was expected to minimize
within-identity distances while maximizing between-identity dis-
tances for trained images, our focus here was on how novel
instances were represented as familiarity increased. In other
words, did prior familiarity (through training) alter face space to
accommodate the recognition of new instances? In addition, fol-
lowing on from Experiments 1 and 2, we considered whether
familiarity more strongly influenced within-person distances in
comparison with those between people.

Method
Stimuli

We used the image set featured in Kramer et al. (2018), which
comprised 4,154 photographs of 335 different identities. The num-
ber of images per identity ranged from a single image (for 161 iden-
tities) to 159 images, with M = 22.16 images, SD = 26.20 images.
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Figure 5
Modeling Results
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Left panel: Model estimates of mean similarity for each level of familiarity and trial type, including

94% HDI. Right panels: Posterior distributions of the contrasts between the two levels of familiarity for
“different people” and “same person” trial types, highlighting the probability of the effects being in the
specified direction. Error bars represent 94% HDI. 94% HDI = 94% highest-density interval.

This set was collected using Google Images searches for actors, ath-
letes, etc., with each image depicting the identity’s unobscured face
in color, posing within approximately + 30° from full face to facil-
itate the placement of landmarks (for further details, see Kramer
et al., 2018). Otherwise, the images were unconstrained regarding
pose, expression, age, lighting, and camera conditions and were
cropped to include only the head.

Model Specification

Following the general approach used in previous work (e.g.,
Burton et al., 2016; Kramer, Jenkins, & Burton, 2017; Kramer,
Young, et al., 2017; Kramer et al., 2018), all images were first land-
marked (via the semiautomatic placement of 82 fiducial points, e.g.,
corners of eyes, corners of mouth, etc.; see Burton et al., 2016) and
then shape-standardized by morphing each of them to a template
derived from the average shape of the entire set. This resulted in a
vector of 40,755 numbers (95 pixels wide x 143 pixels high x 3
RGB layers) that represented each image.

For those (normalized) images/identities that represented prior
knowledge (i.e., the training set), we carried out PCA to reduce
the image vectors without significant loss of variability, resulting
in their representation within a 335-dimensional space. These
highest 335 principal components (explaining 97.7% of the

variance in the original RGB information) were retained as this
was the minimum number required for the LDA due to the number
of identities involved. The images’ projections on these principal
components were then entered into an LDA, where each class rep-
resented an identity. This resulted in a reshaped space comprising
334 dimensions (the number of identities minus 1). Again, with
the goal of reducing the number of dimensions without significant
loss in performance, we retained the first 215 components, which
accounted for 95.0% of the “discriminability” from the overall
LDA space. To be clear, this process was applied to the training
set images only, and the specific images included in this set
were subject to minor variations detailed below (e.g., the number
of images depicting identities that we chose to vary in their levels
of familiarity).

To investigate how an increase in familiarity might affect identity
differentiation within our modeled face space, we selected two iden-
tities from our image set (Ryan Gosling—101 images; Ryan
Reynolds—104 images) who demonstrated the same general appear-
ance (White, male, Hollywood actors of a similar build, height, and
age) and for whom a large number of images had been collected. For
these two men, we considered the distances between two novel
images of the same man, and one novel image of each man, in
order to address the predictions supported by the results of
Experiments 1 and 2.
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Model Justification

We utilized PCA, followed by LDA, to model prior knowledge
of faces. This approach has previously been shown to simulate key
findings within the face perception literature, including the benefits
of familiarity when matching faces, resisting the effects of image
degradation, recognizing novel instances of trained faces, and bet-
ter recognizing internal (in comparison with external) facial fea-
tures (Kramer et al., 2018). Such models have also been used to
simulate the identification of faces as they change across the life-
span (Mileva et al., 2020) or vary in social categories like sex
and race (Kramer, Young, et al., 2017). To be clear, we are not
arguing that the brain is also carrying out a combination of
PCA + LDA, or that this approach produces levels of performance
comparable with humans or state-of-the-art algorithms. Instead, the
benefits of implementing this type of model are that it uses rela-
tively straightforward, transparent, and well-understood proce-
dures and that its properties are easy to manipulate/interrogate
(see Young & Burton, 2021).

As in previous work, we operationalized familiarity as the number
of different training images used, motivated by the behavioral find-
ings that increased exposure to face variability produced improve-
ments in face learning, matching, and searching (e.g., Baker et al.,
2017; Corpuz & Oriet, 2022; Matthews & Mondloch, 2018;
Menon et al., 2015; Mileva & Burton, 2019; Murphy et al., 2015;
Ritchie & Burton, 2017).

PCA is an unsupervised, “bottom-up” technique for representing the
faces within a lower dimensional space, based solely on the statistical
properties of the image set. In contrast, LDA is a supervised, “top-
down” method that attempts to cluster the images by identity, minimiz-
ing intraclass and maximizing interclass differences. As such, LDA
represented the learning of identities in that each image was given an
identity label, with these providing the information necessary for deriv-
ing dimensions that maximized identity discrimination.

Procedure

Our PCA + LDA face space had prior knowledge of a core 333
identities (3,949 images), varying in their levels of familiarity
(i.e., the number of images in the training set per identity). To inves-
tigate the effects of familiarity on the distances between images in
this space, we manipulated the levels of familiarity with two addi-
tional identities (Gosling and Reynolds).

For one iteration of our simulation, the model was initially trained
(PCA + LDA) with an image set containing the core 333 identities,
along with 15 images each of Gosling and Reynolds. These were
chosen at random from the images available for the two identities.
In addition, three images of each man were randomly selected
(again, from all available images but excluding those used for train-
ing) to serve as test images. These six images were projected into the
face space that resulted from training the model.

After training, we calculated the Euclidean distances between (a)
two images of Gosling, (b) two images of Reynolds, and (c) the
third (remaining) image of each man. These same three distances,
using the same six images, were then calculated as we increased the
familiarity of both identities within the training set. That is, the num-
ber of images of both men was increased from 15 images each, in steps
of 15, up to 90 images each.” These were chosen at random from the
images available (excluding the test images) while building on the

Figure 6
A Summary of the Model’s Training, Where Familiarity With Two
Identities Was Systematically Increased From 15 to 90 Images
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Note. The predictions illustrate how the distances between the three test
images of each identity (1-3) are expected to change as familiarity with
the two identities (blue/dark gray and orange/light gray) is increased.
PCA = principal components analysis; LDA = linear discriminant analy-
sis. See the online article for the color version of this figure.

previous step (i.e., the first 15 images in the training set remained
while an additional 15 were added in, and so on). Each time, the
model was trained, and the three distances were calculated. This pro-
cess is illustrated in Figure 6, along with our predictions for the effects
of increased familiarity.

2 We began with 15 rather than zero images because a model with no famil-
iarity is qualitatively different from one with some familiarity—the estimated
face space would have to change to accommodate two new identities. As
such, we focused here on a continuous increase in familiarity rather than
incorporating this initial step from “none” to “some” familiarity. (We thank
an anonymous reviewer for highlighting this issue.)
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This training and testing process represented a single iteration of
our simulation. In total, we carried out 100 iterations, each time
selecting the training and test images at random from our original
database as described above to avoid image-specific effects.
Therefore, for each iteration and each level of familiarity (ranging
from 15 to 90 in steps of 15 images), we calculated the distances
for the three pairs of images.

Analytic Strategy

To describe the results of our simulations, we again relied on a
Bayesian hierarchical model-based approach. We predicted
Euclidean distance (i.e., similarity) from increasing familiarity and
a dummy-coded variable that represented the three identity condi-
tions (the between-identities image pair, which served as the refer-
ence category, and two predictors indexing the within-Gosling and
within-Reynolds pairs) and the interaction between these variables.
We also included a group-specific effect of a random intercept for
each iteration of the simulation. More simply, our model simultane-
ously identified the association between familiarity and Euclidean
distance for each image pair condition, accounting for variability
in results over simulation iterations.

The prior structure of the model followed the same convention
as in Experiment 1, with weakly informative priors set on all
model parameters and a Gaussian likelihood, but the scale of the
priors was altered to reflect the (arbitrary) scale of the Euclidean
distance metric. The intercept and coefficients representing iden-
tity condition, familiarity, and their interaction had a Gaussian dis-
tribution prior, with a mean of 0 and a standard deviation of
10,000, with a half-Gaussian distribution with a standard devia-
tion of 5,000 used for the error variance. The group-specific effect
for the simulation was also Gaussian with a mean of O and a stan-
dard deviation of 10,000. Four Markov Monte Carlo chains were
run, with each having 3,000 tuning steps and 4,000 samples drawn
from the posterior. The model converged, and all parameters had
an R of <1.01.

Model Interpretation

We again predicted a specific pattern of results. For both the
within-Gosling and within-Reynolds pairs, we expected negative
slopes, such that increasing familiarity decreased the Euclidean dis-
tance. In contrast, we predicted that the between-identities pair
would have a positive slope—increasing familiarity would yield
greater distance. These estimates were recovered from the model
by the simple addition of the familiarity slope (which represents
the slope of the between-identities pair) to the two interaction coef-
ficients, which (before addition) represented the difference between
the between-identities slope and the slope for the within-Gosling and
within-Reynolds pairs, respectively.

Results

After estimating the model, we predicted the expected Euclidean
distance for each image pair and level of familiarity (see Figure 7).
Recovering the familiarity slope for each image pair showed nega-
tive associations for both the within-Reynolds and within-Gosling
pairs, b=-4.77, [-7.71, —1.80], p(6 <0)=99.9%, and b=
—5.62,[—8.56, —2.69], p(6 < 0) = 100%, respectively. In contrast,
the slope for the between-identities pair was positive, b =5.93,

[2.99, 8.84], p(6 > 0)=100%. Given these certain probabilities,
the joint hypothesis—that both within-identity pairs were negatively
associated with increased familiarity while the between-identities
pair was positively associated—was 99.8%.

Ruling Out a Possible Confound

We have shown that increased familiarity produced a decrease in
the distances between images of the same identity while increasing
the distances between images of different identities. However, by
considering within- and between-identity distances for the two
men being learned, it may be that these measures have been con-
founded. In other words, since the within-person distances
decreased with increasing familiarity, could this be causing the
apparent increase in distance between images of the two men? If
novel images of Reynolds are represented closer to each other
and the same is true for the novel images of Gosling, perhaps
this explains why one novel image of each man appears further
from each other.

To address this possibility, during the above simulations, we col-
lected additional data. Alongside calculating the distance between
one novel image of each man (see the bottom of Figure 6), we
also calculated the distances from both of these images to represen-
tations of two trained (already familiar) men. To this end, we
selected two identities from the trained image set of 333
identities—Brandon Beemer (97 images) and Christian Oliver
(97 images). Both men shared the same general appearance as
Reynolds and Gosling (i.e., White, male, actors of a similar build,
height, and age).

During each iteration, after the model was trained with the varying
number of images of Gosling and Reynolds, we calculated the posi-
tions of both Beemer’s and Oliver’s centroids (i.e., the average loca-
tion across all images for that identity). We then calculated the
distances from each of the novel images of Gosling and Reynolds
to these two centroids. Throughout the training process, the number
of images of Beemer and Oliver did not vary (remaining at 97 for
each man). As such, if the distance from a novel image of
Reynolds to Beemer’s centroid, for instance, increased with increas-
ing familiarity with Reynolds, then this could not be explained by a
decrease in the within-identity distances of Beemer’s images and a
resulting increase in distance to one of his images.

To analyze these distances, as before, we employed a Bayesian
regression model that predicted Euclidean distance from increasing
familiarity, a dummy-coded variable representing the two test iden-
tities (Gosling and Reynolds), and a dummy-coded variable repre-
senting the novel identities (Beemer and Oliver), and allowed all
of these variables to interact. Our model thus estimated the associa-
tion between familiarity and distance within each combination of test
identity and trained identity simultaneously, allowing us to test the
hypothesis that these slopes were positive.

The prior structure of this model followed the same convention as
above, with weakly informative priors on all parameters and a
Gaussian likelihood, scaled to reflect the Euclidean distance metric.
The intercept and coefficients, including interactions, had wide
Gaussian priors with a mean of 0 and a standard deviation of
10,000, and the error variance had a half-Gaussian with a standard
deviation of 5,000. Four chains were run, with 3,000 tuning steps
and 4,000 samples drawn from the posterior. The model converged
with all parameters having an R of 1.
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Figure 7
Modeling Results
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Note. Left panel: The association between each image pair and familiarity, extracted from the simulation

data by the hierarchical model. Points represent the average Euclidean distance calculated from the raw data
at that familiarity level, though the model was estimated from disaggregated data. Right panels: Slope esti-
mates of the association between each image pair and familiarity, with associated posterior probabilities.

lely for the

We examined the slopes within each combination of test and
trained identity to confirm a positive association, showing clear rela-
tionships between familiarity and distance—Gosling to Beemer,
b=5.25, [3.65, 6.81]; Gosling to Oliver, b =10.78, [9.19, 12.31];
Reynolds to Beemer, b=4.42, [2.84, 5.95]; and Reynolds to
Oliver, b = 8.22, [6.68, 9.79]. These are illustrated in Figure 8 and
clearly confirm the prediction that increased familiarity resulted in
increasing distances between identities, even when considering the
distances to trained, already familiar identities.

Confirming These Patterns Are Identity-Specific

Our results have shown that increasing familiarity with an identity
produced a decrease in the distances between images of that identity
while increasing the distance to other identities. However, this
increase in familiarity also (necessarily) involved an increase in
the number of images in the training set as a whole. We must there-
fore consider whether this increase in model complexity (i.e., the
total number of trained images) would produce our pattern of results
for any identity in the model and not just those that are increasing in
familiarity.

To address this possibility, during the above simulations, we col-
lected additional data. Alongside calculating the distances described
above for novel images of Gosling and Reynolds, we also considered
six novel (untrained) images of Beemer and Oliver (three of each

identity). Specifically, we calculated the Euclidean distances
between (a) two images of Beemer; (b) two images of Oliver; and
(c) the third (remaining) image of each man. Since the familiarity
of both men remained constant throughout our simulations (i.e.,
97 images of each in the training set), we predicted no decrease in
within-identity distances, and no increase in between-identity dis-
tance, for these novel images. Mirroring the process with Gosling/
Reynolds, the training and test images of these two men were
selected at random from the original set of 100 images for each iden-
tity at the start of each iteration to avoid image-specific effects.
Model estimation followed the same analysis strategy as with the
novel images of Gosling and Reynolds (above). We predicted the
Euclidean distances for the within-Oliver and within-Beemer
image pairs, as well as the between-identities pair, for each familiar-
ity level. The familiarity slopes for within-Oliver and within-Beemer
pairs were both close to zero, b = 0.74, [—1.30, 2.95], p(6 <0) =
26.2%, and b=0.14, [-2.05, 2.23], p(6 <0)=44.9%, respec-
tively. The slope for the between-identities pair was positive and
small in magnitude, although still likely to be positive, b =1.97,
[—0.18, 4.12], p(6 > 0) = 95.8%. This is illustrated in Figure 9.
Taken together, these results suggest that simply increasing model
complexity (i.e., by increasing the number of images in the training
set) had little effect on within-identity distances for novel images
when the familiarity of those identities remained constant.
However, between-identities distance showed a slight increase,
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Figure 8

The Distances Between Novel Images of Our Test Identities (Gosling and Reynolds) and the Centroids of Two Trained (Familiar) Identities
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Note. Shaded areas represent 94% credible intervals, while points represent the observed average distances calculated from the raw data.

even for these “constant familiarity” identities, suggesting the poten-
tial influence of the increasing number of training images (of other
identities) in the model. Importantly, this slope was far shallower
in comparison with the Gosling/Reynolds slope (see Figure 7),
where familiarity with those identities varied.

Replicating Our Findings With a Minority Group

It is worth noting that our training set (333 identities) was well
balanced in terms of gender (168 women and 165 men) but not eth-
nicity (269 White, 52 Black, 12 other). Therefore, it may be the case
that the above results are specific to the learning of White identities
(i.e., Gosling and Reynolds), given that the majority of the training
set shared this ethnicity. To investigate further, we repeated the
above analyses but considered a new pair of identities—Kelly
Rowland and Beyoncé Knowles-Carter. For these women, we col-
lected and landmarked images in line with the creation of the original
image database (100 images of Rowland, 101 images of Knowles).
The simulation steps, as well as the model and prior specification,
were identical to the previous analyses.

As before, after model estimation, we predicted the Euclidean dis-
tances for the within-Rowland and within-Knowles image pairs, as
well as the between-identities pair, for each familiarity level. The
familiarity slopes for within-Rowland and within-Knowles pairs
were both negative and similar in magnitude to the original model
implementation, b =—5.45, [-8.20, —2.80], p(6 <0)=100%,
and b= —-5.73, [-8.43, —2.97], p(6 <0)=100%, respectively.
The slope for the between-identities pair, however, was close to
zero, b = —0.20, [—2.89, 2.52], p(8 > 0) = 44.5%. Taken together,
the joint hypothesis that both within-identity slopes were negative
while the between-identity-pair slope was positive was 44.5%.
This is illustrated in Figure 10.

These results suggest that there may be a type of other-race effect
present in our model, whereby the distance between Black identities

(who represent the minority in our training set) did not increase
alongside an increase in their familiarity. However, the decrease in
within-identity distances appears more robust and was again present
in these data.

General Discussion

Across three experiments, we have provided support for the exis-
tence of two representational changes that underlie face familiarity.
Higher levels of familiarity with a face resulted in (a) a perceived
increase in similarity between different instances of that face, as
well as (b) a perceived decrease in similarity between different
faces. These findings were evident in both the continua of preexist-
ing familiarities with celebrities (Experiment 1) and the learned
familiarity of previously novel identities (Experiment 2). For
Experiment 3, we modeled the effects of familiarity in face space
using a simple, supervised classification approach (LDA). We
found that novel images (i.e., ones not included within the training
set) of increasingly familiar identities also demonstrated these two
patterns of results if we considered the distance between images as
a proxy for similarity. However, we uncovered some caveats to
this result, which we discuss below.

The results of Experiments 1 and 2 suggested that the influence of
familiarity was smaller for between-person, in comparison with
within-person, similarity. In other words, increasing familiarity
with a face may produce a more coherent representation of that per-
son predominantly via decreasing the distances between their
instances in face space. Although we found evidence that between-
person similarity also decreased with increasing familiarity, suggest-
ing larger distances between different people in face space, the
strength of this effect was smaller. This result mirrors the findings
of White et al. (2022), whose investigation focused on the similari-
ties between identity averages, as well as between instances and
these averages. That both approaches suggest a lesser role for
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Figure 9
Modeling Results
Between-Identities
8500 =
- Between-ldentities
== Within-Beemer
8000 - Within-Oliver

7500 =

-25 0.0 2.5 5.0

7000 = Within-Oliver

o

e "

2 2

i) © 26.2% <0<V3.8%

0O 6500 = g

[ -

© (7]

[ w

2 g £0.74

S 6000 — 8 u=0.

w 0 ———

=25 0.0 2.5 5.0

5500 — Within-Beemer

44.9%f<P<\65.1%

5000 =
§ as00 © ¢ * ¢ ¢ ¢
Z
—_ I U I J I I -
5 15 30 45 60 75 90 25 0.0 25
) Familiarity with Gosling/Reynolds
Note. Left panel: The association between each image pair as familiarity with Gosling/Reynolds increased,

extracted from the simulation data by the hierarchical model. Points represent the average Euclidean distance
calculated from the raw data at that familiarity level, though the model was estimated from disaggregated
data. Right panels: Slope estimates of the association between each image pair and Gosling/Reynolds famil-

This document is copyrighted by the American Psycholo,

personal use of the in

tended solely for the

iarity, with associated posterior probabilities.

between-person representational distances is in contrast with early
models of face space, which concentrated primarily on this transfor-
mation while ignoring the importance of within-person variability
(e.g., Valentine et al., 2016).

Our computational models, presented in Experiment 3, also pro-
vided evidence of a difference in the two representational changes
under investigation. Increasing familiarity resulted in a robust decrease
in within-identity distances that could not be explained by a simple
increase in the number of training images in the overall model, and
this change was present for both White and Black identities.
However, we found that the increase in between-identities distances
may have, in part, been due to training set size in addition to familiarity.
For two identities that remained constant in terms of familiarity, we
detected a slight increase in the distance between their representations
as the number of training images (of other identities) increased within
the model. Although requiring further investigation, there is behavioral
evidence to support this idea. Balas and Saville (2015, 2017) found
that more limited early experience with faces was associated with
poorer face processing. In our model, simply incorporating more
images within the face space, no matter who they depict, may improve
identity discrimination in general. Therefore, we suggest future studies
might explore this line of questioning further.

In addition, the increase in between-identities distance was absent
for identities representing ethnic minorities. This result mirrors older

research using autoassociative networks (trained on one image per
identity), where similarity was higher for novel images of minority
race faces in comparison with those representing the majority of
the training set (O’Toole et al., 1991). Here, the dimensions of the
face space model may be more attuned to describing variability
within and between images of the majority race and, as such, were
poorer at differentiating between (by locating further apart) minority
race faces. This is in contrast with the decrease in within-identity dis-
tances as familiarity increased, which was also present for minority
race faces, perhaps supporting previous findings of a stronger role
for this transformation in face discrimination (White et al., 2022).

Additional modeling in Experiment 3 suggested that the increase
in the representational distance between identities (at least, for
Gosling and Reynolds) was not simply a by-product of
within-identity images becoming more tightly clustered with
increasing familiarity (by considering the distances to already famil-
iar identities’ centroids). However, we acknowledge that this
approach still may not have entirely ruled out the possibility, and
to do so completely may be challenging. While the change in dis-
tance/similarity between identities may play a lesser role in familiar-
ity’s influence on face representations (White et al., 2022), our
results across all three experiments suggest this change is still present
in refining perceptions of increasingly familiar faces (although per-
haps may feature more heavily for own-race faces).
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Experiment 2 sought to directly manipulate familiarity through
5 min of exposure using video clips. Recent evidence has suggested
that this length of time may be sufficient to produce a robust face rep-
resentation (Popova & Wiese, 2023), and future research could inves-
tigate the minimum amount of exposure required to detect noticeable
changes in similarity perceptions. Indeed, we might predict a continu-
ous change whereby perceptions of similarity increase (or decrease, as
applicable) steadily as familiarity with a new face increases.
Furthermore, our manipulation of familiarity was limited to the viewing
of videos, unlike the real-world social interactions we experience every
day. Following the methods of Popova and Wiese (2023), researchers
might incorporate a more realistic learning paradigm to investigate the
resulting shift in our internal representations of newly learned faces.

Our experiments investigated the effects of familiarity on our
identity representations overall, but it may be worth considering
identity-specific differences in this process. Within- and
between-identity similarities must also depend on the identities
involved, and so the benefits of familiarity for recognition (through
alterations to face space) will likely vary as a result. For instance,
how individuals with particularly invariant features (e.g., Bono’s
tinted sunglasses; Parde et al., 2017) are represented may result in
a lesser benefit of familiarity. To date, research has little considered
face-level differences when it comes to learning and familiarity.

Along similar lines, the variability in previously experienced/
trained images may play a role in similarity perceptions. For

instance, if such images were highly variable then initial learning
of an identity may be more challenging, but the resulting represen-
tation might be more robust, and therefore better able to deal with
representing new images closer together in face space (presumably
facilitating recognition). In contrast, low variability images may pro-
duce simpler learning for a given identity, but the representation
formed from these might lead to representing new images in a less
tightly clustered manner. Previous research has shown that learning
an identity from high- rather than low-variability images resulted in
benefits during subsequent speeded name verification and matching
tasks (Ritchie & Burton, 2017). Therefore, future research might
investigate the influence of variability during learning rather than
quantity (i.e., familiarity) alone.

While our investigation focused on the change in perceived similar-
ity between images of the same person, we were partly limited by
logistical constraints (e.g., the time to complete the experiment). As
a result, we chose to include a range of identities but only two images
per identity. Although it would certainly be interesting to explore sim-
ilarity perceptions for multiple pairs of images of the same identity, we
were also concerned by the necessary exposure required. If participants
were shown several pairs of images, we expect that they would start to
develop some familiarity with the identity during the task (much like a
“two-sort” card sorting task; Andrews et al., 2015). Since this would be
a particularly problematic by-product of using several image pairs, we
chose to limit our design to only one image pair per identity.
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Finally, a recently proposed signal detection-based model
(Fitousi, 2024) has attempted to provide an integrated account of
various findings regarding unfamiliar face matching. However, by
simply considering familiarity as a shift in perceived similarity
between images (as we have demonstrated here), this model is no
longer limited in scope to unfamiliar face perception. Future research
can begin to apply such models to a broader array of contexts with
the goal of deriving a more unified theory of face perception.

In conclusion, our previous understanding of how we internally
represent faces has focused on differentiating between different people
(e.g., Valentine et al., 2016). Far less is known about the challenge of
“telling people together” (Burton, 2013). In other words, how we deal
with, and indeed utilize, the variability of each face for identification
(Burton et al., 2016). Familiarity plays a substantial role in this pro-
cess, and yet the changes underlying its beneficial effects in face rec-
ognition are not well understood. Recent work has identified potential
transformations (Blauch et al., 2021; Kramer et al., 2018) and pro-
vided some initial support for these (White et al., 2022). Here, we pre-
sent further evidence of both hypothesized representational changes,
with the aim of driving forward our understanding in this field.
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