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A B S T R A C T   

Research on social judgments of faces often investigates relationships between measures of face shape taken from 
images (facial metrics), and either perceptual ratings of the faces on various traits (e.g., attractiveness) or 
characteristics of the photographed individual (e.g., their health). A barrier to carrying out this research using 
large numbers of face images is the time it takes to manually position the landmarks from which these facial 
metrics are derived. Although research in face recognition has led to the development of algorithms that can 
automatically position landmarks on face images, the utility of such methods for deriving facial metrics 
commonly used in research on social judgments of faces has not yet been established. Thus, across two studies, 
we investigated the correlations between four facial metrics commonly used in social perception research (sexual 
dimorphism, distinctiveness, bilateral asymmetry, and facial width to height ratio) when measured from 
manually and automatically placed landmarks. In the first study, in two independent sets of open access face 
images, we found that facial metrics derived from manually and automatically placed landmarks were typically 
highly correlated, in both raw and Procrustes-fitted representations. In study two, we investigated the potential 
for automatic landmark placement to differ between White and East Asian faces. We found that two metrics, 
facial width to height ratio and sexual dimorphism, were better approximated by automatic landmarks in East 
Asian faces. However, this difference was small, and easily corrected with outlier detection. These data validate 
the use of automatically placed landmarks for calculating facial metrics to use in research on social judgments of 
faces, but we urge caution in their use. We also provide a tutorial for the automatic placement of landmarks on 
face images.   

1. Introduction 

The human face is an important social stimulus. From a multitude of 
signals within faces, we can infer information about an individual that is 
often critical for social interaction, such as their age (Imai & Okami, 
2019) and sex (Burton et al., 1993). People also make inferences 
regarding social social traits, such as attractiveness (Rhodes, 2006), 
health (Jones, 2018), and trustworthiness (Sutherland et al., 2013), 
from facial characteristics. Although the veracity of these perceptions is 
often questionable, they can influence important social outcomes, such 
as hiring and voting decisions and romantic partner choice (Todorov 
et al., 2015). 

Researchers investigating social judgments of faces will often take 
specific shape measurements from face images and examine associations 

between these measurements and either perceived or physical charac-
teristics of the photographed individual. For example, many studies 
have used this facial metric approach to investigate putative relation-
ships between sexual dimorphism, distinctiveness, bilateral asymmetry, 
or facial width to height ratio (fWHR) and ratings of traits such as 
attractiveness, health, or dominance of face images (Holzleitner et al., 
2014; Jones, 2018; Komori et al., 2009, 2011; Said & Todorov, 2011; 
Scheib et al., 1999). Other studies have used this approach to investigate 
putative relationships between these metrics and qualities of the pho-
tographed individuals such as their physical health, hormonal profile, or 
body size (Cai et al., 2019; Geniole et al., 2014; Lefevre et al., 2013; 
Wolffhechel et al., 2015). This approach has been invaluable for 
providing insights into the nature of the relationships among facial 
shape, person perception, and physical condition and, in doing so, has 
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helped identify factors that drive social judgments of faces. 
A significant barrier to addressing these research questions, and 

more importantly, addressing them well, is the length of time it takes to 
manually place the landmarks that are essential for calculating these 
facial metrics. Indeed, this cost may explain why studies investigating 
relationships among measured face shape and perceived or physical 
characteristics of the photographed individual are often underpowered 
(Cai et al., 2019; Holzleitner et al., 2014). Manual placement of land-
marks on face images is also arguably a barrier to the reproducibility of 
facial metrics, since some research demonstrates that different people 
place key landmarks in different locations on face images (Geniole et al., 
2014; Grammer & Thornhill, 1994; Rikowski & Grammer, 1999; Scheib 
et al., 1999). With many open face image sets now available (for a 
comprehensive list of open access face image sets, see https://rystoli. 
github.io/FSTC.html), these issues represent a significant block on 
research progress. In addition, these landmarks are also often used to 
create facial averages that individual images can be warped between to 
test the effect on perceptions (Scott, Kramer, Jones, & Ward, 2013; 
Sutherland et al., 2017), highlighting the essential nature and involve-
ment of manual landmarking in many avenues of face perception 
research. 

An alternative approach to manual placement of landmarks is to use 
fully automated landmark placement. Computer vision research has 
developed powerful face recognition algorithms trained to place land-
marks quickly, automatically, and reproducibly, using regression tree 
methods (King, 2009). While they have seen extensive use in computer 
vision work (Baddar, Son, Kim, Kim, & Ro, 2016; Damer et al., 2019; 
Özseven & Düğenci, 2017; Schroff, Kalenichenko, & Philbin, 2015), 
these methods have not yet been validated for use in social perception 
research. Given that these automatically placed landmarks capture 
shape information vital for facial recognition (Juhong & Pintavirooj, 
2017; Shi, Samal, & Marx, 2006), they may capture equally well the 
metrics of interest to social perception. If validated for measurement of 
facial metrics, automatic landmark placement would substantially 
decrease the time cost that manual landmark placements require, pro-
duce fully reproducible facial metrics, and ultimately improve the 
quality of research using facial metrics to investigate social perception. 

In light of the above, in our first study, we investigated the correla-
tions between four facial metrics that are commonly used in social 
perception research, sexual dimorphism, distinctiveness, bilateral 
asymmetry, and fWHR, derived from manually and automatically placed 
landmarks. As these shape-dependent measures are sensitive to scaling, 
translation, and rotation, we also examined these correlations between 
these manual and automatic landmarks after submitting them to a 
Generalized Procrustes Analysis (GPA; see Kleisner, Chvátalová, & Flegr, 
2014; Mitteroecker, Windhager, Müller, & Schaefer, 2015). Finally, to 
investigate the generalizability of our results across image sets, we 
investigated these correlations in two independent open-access image 
sets (DeBruine & Jones, 2017; DeBruine & Jones, 2020). In our second 
study, we investigated whether these facial metric generated from 
manual and automatic landmarks show any systematic biases when 
measured on faces of different ethnicities, to test whether automatic 
methods may be generalizable to different study populations without 
introducing biases that can be present in facial detection algorithms 
(O’Toole, Phillips, An, & Dunlop, 2012). 

2. Study One - Estimating correlations between manual and 
automatic landmark measures 

2.1. Method 

All data and analyses (including code for calculating facial metrics) 
can be found on the Open Science Framework (osf.io/5e3qp). Analyses 
were conducted using Python 3.6 and JupyterLab notebooks that detail 
the measurements and statistical analysis. We have also provided a 
tutorial notebook for automatic landmark of faces, also available on the 

Open Science Framework. 

2.2. Image sets 

The first open access image set used in our study was the Face 
Research Lab London Set (DeBruine & Jones, 2017). This image set 
consists of 102 faces (49 females, age M = 27.72 years, SD = 7.11 years) 
of various ethnicities. The second was the Three DSK image set 
(DeBruine & Jones, 2020). This image set consists of 100 White faces (50 
females, age M = 24.25 years, SD = 3.98 years). Photographs were taken 
against a white background in both image sets, and distance to the 
camera was also standardised in both. 

All faces were delineated by a single annotator to minimize inter- 
observer error. Landmarks were placed using Webmorph (DeBruine, 
2017). The landmark template used was one built for transforming and 
averaging images, which includes a variety of anatomical landmarks (e. 
g. outer lip edges, widest point of the face, edges of nose, and so on) as 
well landmarks that are linked to soft tissue areas, such as the cheek 
bones and nasolabial folds. These semi-landmarks were not subjected to 
sliding procedures. Across images, these manually placed landmarks 
were aligned by inter-pupillary distance. The GPA conducted here 
translated, rotated, and scaled shapes, with these steps going some way 
to remove variations in size that are not accounted for by the stand-
ardisation in photographic capture and interpupillary alignment. How-
ever, as we do not have access to absolute size measures of the 
photographed individuals, we are unable to fully remove body size in-
formation (i.e., allometry), of which facial correlates have been shown 
to directly affect social perception independently of measures such as 
sexual dimorphism (Holzleitner et al., 2014). 

Following previous research that used manually placed landmarks to 
generate facial metrics (e.g., Cai et al., 2019; Holzleitner et al., 2014), 
landmarks describing non-facial characteristics, such as hairstyle, that 
are not typically used to derive facial metrics, were removed. The 
average configuration of the remaining 164 landmarks is shown in Fig. 1 
(left panel). 

2.3. Automatic landmark placement 

Each of the two image sets were automatically landmarked using the 
Python face recognition module (https://github.com/ageitgey/face_re 
cognition), which is built on the Dlib machine learning package (King, 
2009). Each face was detected and a set of 72 landmark points were 
placed, recovered, and saved to file. The average configuration of these 
72 landmarks is shown in Fig. 1 (right panel). 

2.4. Measures 

Each measure described below was taken twice, from the manual and 
automatically placed landmarks. Measurements were taken from the 
original landmarks (which retained some elements of rotation which is 
uncorrected for by interpupillary alignment, as well as scaling and 
translation differences), and once more from the landmarks resulting 
from a GPA of the original landmarks. Thus, for each face, there were 16 
scores – one for each of four traits, under two landmark placement types, 
and for raw and Procrustes configurations. 

2.4.1. Facial asymmetry 
Following Jones and Jaeger (2019) and Komori et al. (2009), 

asymmetry of face shape was calculated using a method that treats the 
landmark coordinates as a vector in n-dimensional space (e.g. 328 di-
mensions for manually placed landmarks with 164 xy points, and 144 
dimensions for automatically placed landmarks with 72 points). Asym-
metry is then calculated as the distance between the original vector and 
a version of the vector that is mirror reflected about the origin. Greater 
distances between these vectors indicate greater asymmetry. 
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2.4.2. Facial distinctiveness 
Also following Jones and Jaeger (2019) and Komori et al. (2009), 

distinctiveness of face shape was measured in the following steps. First, 
the vector representation of all faces of the same sex were averaged to 
produce an average male and female vector. Next, the vector represen-
tation of each individual face image’s landmarks was subtracted from 
the average vector for that sex. The unsigned magnitude of this vector 
measures the distance of a given face from the average configuration. 
Greater distances indicate greater distinctiveness – the facial shape is 
further from the average configuration. 

2.4.3. Facial sexual dimorphism 
Following Jones and Jaeger (2019), sexual dimorphism of face shape 

was measured with a vector projection approach (Mitteroecker et al., 
2015), using multivariate regression. Biological sex (male faces coded as 
zero, female faces coded as one) was first regressed against the shape 
vectors for each face. This analysis produces a coefficient vector that 
describes how facial shape changes with biological sex. Each individual 
face’s vector was then projected onto this axis, resulting in an objective 
dimorphism score that indicates how far along the dimorphism axis a 
face is. Greater scores indicate greater femininity. For each face, sexual 
dimorphism was calculated twice (once from the manually placed 
landmarks and once from the automatically placed landmarks). 

2.4.4. Measuring fWHR 
Following Zhang et al. (2019) and Lefevre et al. (2013), face width 

was first calculated as the Euclidean distance between the landmarks 
describing bizygomatic width. Face height was then calculated as the 
distance between the averaged points describing the top lip and the 
averaged points describing the highest arch of each eyebrow. fWHR was 
then calculated for each face from these measurements. For each face, 
fWHR was calculated twice (once from the manually placed landmarks 
and once from the automatically placed landmarks). 

2.5. Power and analytical strategy 

As we used open-access databases, we were limited in the sample of 
faces available, and thus the number of observations available for sta-
tistical tests. As such, we conducted a sensitivity analysis to give us an 
estimate of the smallest correlation we could detect. For a simple cor-
relation between measures derived from measures placed manually and 
automatically, with alpha set to 0.05 and beta at 0.80, and with 100 
observations (our smallest sample size), we can detect a correlation of 
0.27. To provide a convincing argument for the use of automatically 
placed landmarks to measure faces, we would expect to see correlations 
far higher than this – detecting such a small effect would suggest there is 
considerable divergence between the placement types. As such, our 
sample size allows for comfortable detection of large and meaningful 
correlations. 

2.6. Results 

For each of the four facial metrics (sexual dimorphism, distinctive-
ness, bilateral asymmetry, and fWHR), we computed the Pearson cor-
relation between scores generated from manually and automatically 
placed landmarks. We did this separately for each raw and Procrustes 
landmark coordinates, and separately for each image set for internal 
replication purposes. Fig. 2 shows these correlations in full, which were 
all statistically significant at p < .001, and the results are summarized in 
Table 1. 

While correlations between metrics derived from manually and 
automatically placed landmarks were generally very high, ranging from 
0.654 to 0.996 for standard landmarks, and from 0.558 to 0.930 for 
Procrustes aligned landmarks, the correlation for distinctiveness was 
substantially lower in the Three DSK set than it was in the London Set. By 
using ordinary least squares to predict Manual distinctiveness scores 
from Automatic distinctiveness scores in the Three DSK face set, we 
identified the only face with a studentized residual above or below ±3 

Fig. 1. The average configuration of manually and automatically placed landmarks used to derive facial metrics in our study.  
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Fig. 2. Correlations between measures produced from manually and automatically placed landmarks for the Face Research Lab London (top row) and Three DSK 
(bottom row) image sets. Main axes represent the standard landmarks, while inset axes represent Procrustes-fitted landmarks. The solid black lines represent the 
ordinary least squares fit, the dashed lines represent the 95% confidence interval of the coefficient, and the shaded areas represent the 95% prediction intervals 
(where new predicted values would fall). 
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(for a model using standard landmarks, score = − 10.42, for the model 
with Procrustes landmarks, the same face had a score of = − 4.31). 
Examining its automatic landmark configuration revealed that the face 
detector had made significant errors in placing points along the jaw and 
mouth. 

Consequently, we first recomputed the correlations in the Three DSK 
set when this face was removed. Correlations increased for all standard 
landmark measures – fWHR r = 0.873, distinctiveness r = 0.852, sym-
metry r = 0.926, and dimorphism r = 0.911. For Procrustes landmarks, 
only symmetry r = 0.863, and distinctiveness r = 0.639, increased. 
Dimorphism did not change, nor did fWHR (which is identical between 
Procrustes and standard landmarks, as it relies on relative distances 
between individual points). All correlations remained significant at p <
.001. 

We also conducted a simple geometric morphometrics analysis to 
assess the relationship between the way the different landmark sets 
captured facial form. To do this, we took the Procrustes fitted landmarks 
in each set, for manual and automatic placements, and submitted them 
to a principal components analysis, limiting the analysis to the first two 
components. We then correlated the manual components with their 
automatic counterparts. Geometrically, this operation is equivalent to 
finding the angles between these components. That is, if the resulting 
landmark arrangement PC’s capture similar information about the faces, 
they should be significantly correlated. These correlations may be pos-
itive or negative, as direction of principal components is arbitrary. For 
the London set, the manual and automatic PC1 was strongly correlated, 
r = 0.89 (26.88◦), p < .001, as was PC2, r = 0.81 (36.19◦), p < .001. For 
the Three DSK set, the manual and automatic PC1 was strongly nega-
tively correlated r = − 0.87 (150.62◦), p < .001. The correlation here for 
PC2 was also significant, but was somewhat weaker, r = − 0.51 
(120.93◦), p < .001. These correlations indicate, particularly for the 
maximal axes of variability in faces, that both landmark sets capture 
similar variance. 

3. Study Two - Testing for potential biases in automatic 
landmark placement 

We have demonstrated that strong correlations emerge between 
commonly used facial metrics measured from manual and automatically 
placed landmarks. Aside from errors in automatic landmarking on 
certain faces, automatic placement appears to be accurate and capable 
of deriving metrics of interest. However, automatic landmark placement 
of the kind leveraged here is a critical step in face detection and 
recognition algorithms (Damer et al., 2019; Juhong & Pintavirooj, 2017; 
Köstinger, Wohlhart, Roth, & Bischof, 2011; Shi et al., 2006). Moreover, 
there has been controversy and research around how these algorithms 
are biased in a multitude of ways. Ethnicity is a salient example, with 
findings indicating variability in face recognition algorithms for faces of 
different ethnicities (O’Toole et al., 2012), with studies demonstrating 
poorer performance on different demographic cohorts (Klare, Burge, 
Klontz, Vorder Bruegge, & Jain, 2012). This issue has received signifi-
cant attention in computer vision (Abdurrahim, Samad, & Huddin, 
2018; Garcia, Wandzik, Grabner, & Krueger, 2019), and is an active area 
of research (Wang & Deng, 2020). While face recognition networks are 
comprised of multiple steps, the algorithms that find and place land-
marks may be a generator of these biases. Thus, automaticing 

landmarking may introduce systematic errors in labelling that could 
bleed into metrics calculated from these landmarks. If present, this bias 
would significantly hamper the use of automatic landmarks for facial 
metrics, as they may induce spurious correlations between metrics for 
certain demographics. To be clear, we do not claim that ethnicity is the 
only factor that face detection algorithms may induce bias on, when 
other prominent examples include age and sex (Das, Dantcheva, & 
Bremond, 2018), but we focus here on a critically important factor for 
both computer vision and psychological research. 

In the following study, we included two separate samples of White 
and East Asian faces and examined the correlation between metrics 
derived from automatic and manually placed landmarks for these faces. 
We test how closely automatic landmark measures approximate manual 
measures and, importantly, whether this approximation is moderated by 
face ethnicity. Indeed, it has been shown that some facial recognition 
algorithms have poorer accuracy for East Asian faces compared to White 
faces (Cavazos, Phillips, Castillo, & O’Toole, 2020). As such, this study 
provides a useful test of wheter landmark placement seems systemati-
cally different between these ethnicities, and will provide insight into 
the extent these landmarks can be utilised for deriving facial metrics. 

3.1. Method 

3.1.1. Image sets 
We used an image database reported in Zhang et al. (2019), which 

comprised 100 East Asian and 100 White individuals in their mid 
twenties. There was an even split of women and men in each ethnicity. 
Faces were manually landmarked in the same manner as study one, 
using the same set of landmarks to outline facial shape, which were 
aligned on interpupillary distance. All individuals were photographed 
facing the camera with a neutral expression. 

3.1.2. Automatic landmark placement 
Faces were landmarked using the same face detector and landmark 

set as study one. 

3.2. Measures 

The four measures from each face were calculated in exactly the 
same way as in the initial study, separately for each ethnicity. Given the 
generally strong associations between standard and Procrustes aligned 
shapes in study one, we restrict our analysis here to the results of 
standard landmarks. If biases are found, then it is this landmark repre-
sentation that must be corrected. 

3.3. Analytical strategy 

To test for biases between ethnicity and automatically generated 
metrics, we used linear regression to model manual landmark metrics as 
a linear function of the mean-centred automatic landmark metric, 
ethnicity (dummy coded, White faces as zero, East Asians as one), and 
the interaction between the two of these predictors. Here, the interac-
tion is the key test, as a significant coefficient will indicate a different 
strength of approximation in automatic landmarking metrics between 
ethnicities. Main effects of ethnicity may represent differences between 
ethnicities in certain facial metrics (Danel et al., 2018; Fang, Clapham, & 

Table 1 
Correlations between automatic and manual landmark placement derived facial metrics.  

Set Landmark representation fWHR Distinctiveness Symmetry Dimorphism 

London Standard 0.906 [0.86, 0.94] 0.989 [0.98, 0.99] 0.969 [0.95, 0.98] 0.996 [0.99, 1.0] 
Procrustes 0.784 [0.7, 0.85] 0.794 [0.71, 0.86] 0.930 [0.90, 0.95] 

ThreeDSK Standard 0.818 [0.74, 0.87] 0.654 [0.53, 0.75] 0.924 [0.89, 0.95] 0.851 [0.79, 0.9] 
Procrustes 0.558 [0.41, 0.68] 0.772 [0.68, 0.84] 0.748 [0.65, 0.82] 

Note. All correlations significant at p < .001. Bracketed values indicated 95% confidence intervals. 
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Chung, 2011). Where a significant interaction is present, we use analysis 
of variance to examine the amount of variance it explains compared to a 
model with only the main effects (that is, automatic and ethnicity 
predictors). 

3.4. Results 

The main regression results are presented in Table 2. Across each 
trait, the models explained significant variance in the manual metrics, 
and had low root-mean-squared-error (RMSE). For the symmetry and 
distinctiveness models, we observed no significant main effects or in-
teractions with ethnicity, and the magnitude of the coefficient of auto-
matic ethnicity serves as a measure of the accuracy of the approximation 
in interpretable units – for example, the coefficients of the automatic 
landmark measurement vary between 0.603 and 1.476, meaning the 
automatic metrics both under and overestimate the manual landmarks, 
but all within a range of close to one unit – a coefficient of 1 would 
represent a direct one-to-one mapping. In all cases the RMSE of the 
predictions were small on the actual scale of the metrics. 

Measures of symmetry and distinctiveness were unrelated to 
ethnicity and its interaction with automatic measures. For fWHR and 
dimorphism, we observed a significant interaction, indicating the 
automatic landmark approximation of manual metrics differed between 
ethnicities, and we consider these in detail. 

3.4.1. fWHR 
For fWHR, the automatic coefficient represents the slope (and thus 

approximation of manual metrics) for White faces, β1 = 0.603. Thus, for 
East Asian faces, the approximation is significantly higher, equal to the 
sum of the main effect fit and interaction coefficients (β1 + β3 = 0.894). 
fWHR is thus approximated more closely in East Asian faces by auto-
matic landmarks than in White faces. Using a model comparison 
approach (Type III sums of squares), we computed the magnitude of the 
variance this interaction term - and thus difference between ethnicities 
in landmarking approximation – contributed to the model, which was 
small but significant ΔR2 = 0.024, F(1, 196) = 13.14, p < .001. Finally, 
we examined the fWHR model for faces with high (> ± 3) studentized 
residuals. Three White faces showed very large errors above three 
(studentized residuals = 7.36, 4.98, − 3.96), and inspecting their auto-
matic landmarks revealed errors in placement of the mouth area. 
Omitting these faces and refitting the model led to the interaction 
becoming non-significant (p = .057), and a much higher overall model 
fit, adjusted R2 = 0.787. 

3.4.2. Dimorphism 
For sexual dimorphism, the main effect of ethnicity (reflecting mean 

differences in dimorphism between East Asian and White faces) was a 
strong predictor. Nonetheless, the interaction was significant, and the 
coefficient for automatic landmark dimorphism showed a tendency to 
over-estimate manual landmark dimorphism, β1 = 1.307. The interac-
tion term again showed East Asian faces were more closely approxi-
mated than White faces (β1 + β3 = 1.19). A model comparison approach 

revealed the interaction term contributed a significant yet very small 
proportion of variance, ΔR2 < 0.001, F(1, 196) = 8.33, p = .004. 
Examining the dimorphism model for faces with high studentized re-
siduals again revealed three White faces (two of which were the same 
cases as in the fWHR model, scores = 6.12, 4.17, 3.09). Removing them 
from the model did not affect the significance of the interaction. 

The predictions of the models with interactions are shown in Fig. 3. 

4. Discussion 

The current studies used several independent image sets to investi-
gate the correlations between four facial metrics commonly used in 
social perception research (sexual dimorphism, distinctiveness, bilateral 
asymmetry, and fWHR) when they were derived from manually and 
automatically placed landmarks, as well as estimating the degree of bias 
that may occur if these landmarking procedures are used on faces of 
different ethnicities. 

Fig. 2 highlights the main finding that, across both image sets and all 
four facial metrics, and under the raw and Procrustes shape represen-
tations, correlations between measures derived from automatically and 
manually placed landmarks were high. An encouraging perspective of 
these findings is to compare them with reported correlations in the 
literature, which detail the reliability of measures taken from two in-
dependent researchers placing landmarks separately. For example, these 
have been reported as high as r = 0.87 for fWHR (Geniole et al., 2014), r 
= 0.80 and r = 0.85 for asymmetry (Grammer & Thornhill, 1994; 
Rikowski & Grammer, 1999), and r = 0.85 for sexual dimorphism 
(Scheib et al., 1999). That we find similar values here is relatively un-
surprising, as earlier efforts in computer vision research achieved ac-
curacy in landmark placement of within five pixels to manually labelled 
images (e.g., Efraty, Papadakis, Profitt, Shah, & Kakadiaris, 2011). 
These results are therefore good evidence that automatic landmarks 
closely approximate manual landmarks, and the measures derived from 
those automatic landmarks are similar to those from manual labels. 

Across both image sets, the correlations between manual and auto-
matic landmark measures were lower for Procrustes landmarks, indi-
cating a divergence in automatic and manual measures when shapes had 
been translated, scaled, and rotated. This makes geometric sense across 
measures. Using symmetry as an example, consider a face that is posing 
with a slight head tilt. The reflection of its landmarks to measure sym-
metry would yield a greater asymmetry score, as some of the asymmetry 
is attributable to simple head tilt. The fewer landmarks placed by face 
detectors will capture less of the variability in actual morphometry here, 
and thus be more sensitive to head tilt, while the greater number of 
landmarks in the manual condition will be less sensitive and offer a 
better measure. 

For measures like distinctiveness, the translation, rotation, and 
scaling may contribute to the measure of distinctiveness itself – a face 
can be distinctive due to its rotation compared to the mean configura-
tion and not due to any morphology divergences. In Procrustes space, 
when these factors are removed, the reduced number of landmarks 
afforded by automatic placement could be a somewhat weaker 

Table 2 
Results of multiple regression for each of the four facial metrics.  

Metric Model fit F(3, 
196) 

Adj R2 RMSE β0 intercept β1 automatic β2 ethnicity β3 interaction 

fWHR 121.20 0.644 0.047 1.570* [1.560, 1.579] 0.603* [0.502, 
0.703] 

− 0.019* [− 0.033, − 0.006] 0.291* [0.133, 0.450] 

Distinctiveness 541.30 0.891 78.60 633.972* [618.251, 649.694] 1.358* [1.263, 
1.452] 

1.861 [− 20.371. 24.093] − 0.017 [− 0.150, 
0.115] 

Symmetry 2855.10 0.977 135.64 23,234.831 [23,207.796, 
23,261.865] 

1.476* [1.434, 
1.518] 

− 31.206 [− 69.441, 7.029] − 0.002 [− 0.066, 
0.061] 

Dimorphism 21,222.80 0.997 93.45 − 19,412.409* [− 19,457.522, 
− 19,367.269] 

1.307* [1.258, 
1.356] 

1145.477* [1073.077, 
1217.878] 

− 0.117* [− 0.197, 
− 0.037] 

Note. Coefficients with asterisks are significant, highest observed p-value = .0051. 
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approximation of appearance. Dimorphism measures may similarly be 
affected as the distance between female and male average configura-
tions may change with Procrustes analysis. However, here we were 
unable to remove shape variation that is linked with body size – that is, 
allometry. This has been shown to vary with certain metrics like 
dimorphism (Mitteroecker et al., 2015), and indeed can affect social 
perception independently of measures like sexual dimorphism (Hol-
zleitner et al., 2014). Thus, we cannot rule out that the differences that 
emerged between the raw and Procrustes configurations (which have 
been scaled) could be linked to this source of variation. Despite this, the 
correlations for measures derived from Procrustes analysis are still high, 
and we again urge caution in checking the landmark configurations if 
users utilise this method. 

A risk of systematic bias in facial recognition algorithms, which rely 
heavily on automatic landmark placements, is apparent and well 
researched (Cavazos et al., 2020; Das et al., 2018). In our second study, 
we found that, for symmetry and distinctiveness measures, automati-
cally derived metrics were a close approximation (though slightly up-
wardly biased) of manual metrics, and showed no evidence of 
significantly interacting with ethnicity. However, for fWHR and sexual 
dimorphism, this interaction was significant. Contrary to popular ex-
pectations of algorithmic bias, we found that fWHR and dimorphism 
were more poorly approximated in White faces. Further investigating 
these differences by way of outlier analysis revealed White faces with 
significant automatic landmarking errors. Removing these for fWHR 
resulted in a more equal approximation between ethnicities, but not for 
dimorphism. 

Our results appear to validate the use of automatically placed land-
marks for deriving facial metrics to employ in social perception 
research, but with several very important caveats. This validation is 
important for two reasons. First, it suggests that automatically placed 
landmarks can be used to derive facial metrics, removing the substantial 
time costs that the manual placement method is subject to and, poten-
tially, allowing researchers to use this timesaving to increase the number 
of faces tested. Second, it suggests that automatically placed landmarks 
could be used to produce more replicable facial metrics, by contrast with 

those derived from manually placed landmarks. Automatically placed 
landmarks might also be usefully employed for other common methods 
in face research that require placement of landmarks, such as averaging 
and transforming face images. 

The caveats are both practical and theoretical. The first is that, in 
both of our studies, the automatic landmarks did not always delineate 
faces correctly, and substantial errors were made on a small percentage 
of faces (<2%). We analysed our data without inspecting these land-
marks directly, taking with us a naïve assumption in our inferential 
approach, which we corrected with outlier detection. A primary 
conclusion is that researchers who wish to leverage the rapid generation 
of landmarks cannot treat them as error-free, and each face should be 
carefully checked before continuing with analysis. The second and most 
important caveat is that, while we found mild evidence for bias in 
automatic landmark placement across two ethnicities, without testing 
multiple other potential sources of bias, such as age or different eth-
nicities, there is no guarantee that automatic landmark placement does 
not have biases that can influence metrics or tests derived from those 
landmarks. Conversely, while there is no empirical evidence that we are 
aware of that shows human raters are unbiased when manually land-
marking faces of different ethnicities, ages, or various other parameters, 
we suggest that it is premature to rule out other biases that automatic 
landmarking may induce within social perception research. Likely, the 
best approach is semi-supervised landmarking, whereby automatic 
landmarks are critically and carefully checked by researchers. Fortu-
nately, this is likely to be a significantly faster process than manual 
delineation and with very similar outcomes. 

We have provided a tutorial for the installation and use of the soft-
ware we employed for automatic placement of facial landmarks, 
together with the code that we used to calculate the facial metrics we 
investigated, on the Open Science Framework (osf.io/5e3qp). We hope 
that these resources will allow researchers to more easily make use of the 
many large image sets now being made open access and more easily 
increase the sample sizes they employ in research using facial metrics. In 
doing so, we hope to see substantial improvements in the reliability of 
social perception research employing facial metrics. 

Fig. 3. Model fits of the fWHR (left) and dimorphism (right) models illustrating the interactions between automatic landmark metrics and ethnicity on predicting 
manual landmark metrics. Dashed lines represent the 95% confidence interval of the coefficient, and the shaded areas represent the 95% prediction intervals (where 
new predicted values would fall). 
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